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1. Introduction

Personal identification stands as a fundamental

pillar in the realm of forensic investigations. Its 

importance resonates deeply in various critical 

scenarios, including the identification of victims, the 

investigation of criminal activities, and the complex 

undertaking of disaster victim identification (DVI). For 

many years, forensic science has relied upon a suite of 

traditional methodologies to establish individual 

identity. These encompass fingerprint analysis, the 

meticulous process of DNA profiling, the examination 

of dental records, and the analysis of personal 

belongings retrieved from the scene. Each of these 

traditional methods, while holding substantial value 

and having contributed significantly to numerous 

investigations, is not without its inherent limitations. 

e-ISSN: 2987-1530

Sriwijaya Journal of Forensic and Medicolegal 

(SJFM) 

Journal website: https://phlox.or.id/index.php/sjfm 

Retinal Vascular Biometrics for Personal Identification in Forensic Investigations: A 

Pilot Study in the Palembang Population 

Ramzi Amin1* 

1Department of Ophthalmology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia 

ARTICLE   INFO 

Keywords: 

Forensic investigations 

Indonesia 

Palembang 

Personal identification 

Retinal vascular biometrics 

*Corresponding author:

Ramzi Amin 

E-mail address:

ramziamin@fk.unsri.ac.id 

The author has reviewed and approved 
the final version of the manuscript. 

https://doi.org/10.59345/sjfm.v2i2.188

A B S T R A C T 

Introduction: Reliable and rapid personal identification is paramount in 
forensic investigations. Traditional methods can be time-consuming or 
challenging, particularly in cases involving fragmented remains or limited 

access to comparative data. Retinal vascular biometrics, leveraging the unique 
and stable pattern of blood vessels in the retina, presents a promising 
alternative. This pilot study aimed to evaluate the feasibility and accuracy of 
using retinal vascular patterns for personal identification within a population 

in Palembang, Indonesia. Methods: This prospective pilot study involved the 
collection of retinal images from a convenience sample of 100 individuals 
residing in Palembang, Indonesia, between August and December 2024. Retinal 
images were captured using a non-mydriatic fundus camera model commonly 

available in ophthalmological clinics. Pre-processing steps included image 
enhancement and noise reduction. Feature extraction was performed using a 
combination of techniques, including vessel segmentation algorithms and 
fractal analysis. A matching algorithm based on normalized cross-correlation 

and feature vector distance was employed to compare retinal images. The 
performance of the biometric system was evaluated using metrics such as the 
False Acceptance Rate (FAR), False Rejection Rate (FRR), and Equal Error Rate 
(EER). Results: The analysis of 10000 comparison attempts (100 genuine and 

9900 imposters) yielded promising results. The calculated EER for the retinal 
vascular biometric system was 0.85%. The FAR at a 0% FRR was 0.1%, and the 
FRR at a 0% FAR was 1.6%. The average processing time for feature extraction 
and matching was approximately 1.5 seconds per comparison. Demographic 

analysis suggested no significant difference in accuracy across different age 
groups within the studied sample. Conclusion: This pilot study demonstrated 
the potential of retinal vascular biometrics as a reliable and efficient method for 
personal identification within the Palembang population. The low EER suggests 

a high level of accuracy. Further research with larger sample sizes is warranted 
to validate these findings and explore the practical implementation of this 
technology in forensic investigations in Indonesia. 
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Fingerprints, for instance, may be compromised in 

various ways; they can be smudged, damaged, or 

entirely absent from crime scenes, hindering the 

identification process. DNA analysis, renowned for its 

high level of accuracy and reliability, often presents 

challenges related to time constraints. The process can 

be lengthy, and its success hinges on the availability 

of suitable biological samples, which may not always 

be present or recoverable. Dental records, another 

valuable tool, are dependent on the existence of prior 

records for comparison, a condition that is not always 

met. Furthermore, their utility can be severely 

compromised in cases involving significant trauma to 

the remains. The reliance on personal belongings for 

identification also carries a degree of uncertainty. 

These items can be unreliable indicators, potentially 

misleading investigators due to misplacement, 

tampering, or destruction. In light of these limitations, 

the field of forensic science recognizes the pressing 

need to explore and develop alternative and 

complementary biometric identification techniques. 

The aim is to augment the effectiveness of forensic 

investigations by providing investigators with a more 

robust and versatile toolkit for establishing identity. 

Biometrics, defined as the automated methods of 

identifying or verifying individuals based on their 

distinct biological and behavioral traits, has emerged 

as a promising field that offers potential solutions to 

many of these challenges. The exploration of various 

biometric modalities for application in forensic 

contexts has led to significant advancements. These 

modalities include facial recognition systems that 

analyze unique facial features, iris scanning 

technology that examines the intricate patterns of the 

iris, voice recognition software that identifies 

individuals by their vocal characteristics, and gait 

analysis, which studies the distinctive patterns of 

human movement. Among these diverse biometric 

approaches, retinal vascular biometrics has been the 

subject of increasing interest and investigation, largely 

due to its inherent advantages and potential for high 

accuracy.1-4 

The retina, a delicate layer of tissue located at the 

back of the eye, is responsible for sensing light and 

initiating the process of vision. It contains a complex 

network of blood vessels, forming an intricate and 

highly detailed pattern. This network of retinal blood 

vessels is widely acknowledged to be unique to each 

individual. Even identical twins, who share nearly 

identical genetic makeup, possess distinct retinal 

vascular patterns. Furthermore, this uniqueness is 

characterized by its stability over time. The retinal 

vascular pattern remains relatively consistent 

throughout an individual's lifespan, undergoing only 

minimal changes barring the onset of significant 

pathological conditions that may affect the eye. The 

high degree of individuality observed in retinal 

vascular patterns can be attributed to the random 

processes that govern the formation of these vessels 

during the early stages of embryonic development. 

Another key advantage of retinal biometrics lies in the 

location of the retina within the eye. As an internal 

organ, the retina enjoys a protected environment, 

shielded from the detrimental effects of external 

environmental factors. This inherent protection 

renders it less susceptible to damage or alteration 

compared to external biometric identifiers, such as 

fingerprints or facial features, which are constantly 

exposed to the external environment and more 

vulnerable to injury. The process of retinal vascular 

biometrics relies on several key steps to achieve 

identification. Initially, an image of the retina is 

captured using a specialized camera designed for this 

purpose. This image acquisition process records the 

intricate details of the retinal vasculature. Following 

image capture, the unique vascular pattern is 

extracted from the retinal image. This extraction 

process involves sophisticated image processing 

techniques that isolate and highlight the distinctive 

features of the blood vessel network. The extracted 

pattern is then used as a template for comparison. To 

identify or verify an individual, this template is 

compared against a database containing a collection of 

known retinal patterns. By analyzing the degree of 

similarity between the extracted pattern and the 

patterns stored in the database, the system can 

establish or confirm an individual's identity.5-7 

Modern retinal imaging technology, particularly the 

use of non-mydriatic fundus cameras, offers the 

advantage of being a non-contact procedure. This non-



53 

contact nature translates to a potentially convenient 

and hygienic method for identification, as it eliminates 

the need for direct contact with the individual. While 

retinal scanning technology has been successfully 

implemented in high-security access control systems 

for a considerable period, its application within the 

field of forensic investigations is still considered to be 

in the early stages of development and 

implementation. Despite its relatively nascent stage in 

forensics, the potential of retinal biometrics for 

identification has been explored in several studies 

involving general populations. These studies have 

consistently yielded promising results, demonstrating 

high levels of accuracy in individual identification. In 

many instances, the accuracy rates associated with 

retinal biometrics have been shown to surpass those 

of other commonly used biometric modalities. 

However, to fully understand the applicability and 

effectiveness of this technology, further investigation 

is essential. Specifically, there is a need for more 

research focused on its application within specific 

forensic contexts. This includes evaluating its 

performance across diverse populations and varying 

geographical regions, to ensure its robustness and 

generalizability. Indonesia, a large archipelago nation 

characterized by its diverse population and 

geographical distribution, presents a unique set of 

challenges for forensic identification efforts. The 

nation's geographical dispersion, with its numerous 

islands and remote areas, coupled with the varying 

levels of technological infrastructure present across 

different regions, complicates the implementation of 

standardized forensic identification procedures. 

Palembang, the capital city of the South Sumatra 

province, represents a significant urban center within 

this diverse Indonesian context. Investigating the 

applicability and performance of retinal vascular 

biometrics within the specific context of the 

Palembang population is of paramount importance. 

Such an investigation will provide crucial insights into 

the potential of this technology to serve as an effective 

forensic identification tool within this particular 

region.8-10 This pilot study was designed to address 

this gap in knowledge by evaluating the feasibility and 

accuracy of utilizing retinal vascular patterns for 

personal identification within the population of 

Palembang, Indonesia. 

2. Methods

This study employed a prospective pilot design to

meticulously assess the feasibility and accuracy of 

retinal vascular biometrics as a tool for personal 

identification within the Palembang population, 

located in Indonesia. The methodological framework 

encompassed several key stages: the collection of 

retinal images from study participants, a series of pre-

processing steps aimed at enhancing image quality, 

the extraction of salient features from the retinal 

vasculature, the implementation of a matching 

algorithm to compare retinal patterns, and finally, a 

comprehensive evaluation of the system's 

performance. 

The study population consisted of a convenience 

sample of 100 individuals residing in Palembang, 

Indonesia. These participants were recruited between 

August and December 2024, through collaborations 

with local community centers and ophthalmological 

clinics in the area. Prior to their involvement, informed 

consent was obtained from each participant, ensuring 

that they were fully aware of the nature of the study 

and their rights. The study protocol was designed to 

adhere strictly to the ethical principles set forth in the 

Declaration of Helsinki, a set of ethical principles for 

medical research involving human subjects. 

Furthermore, the study protocol received formal 

approval from the relevant institutional ethics 

committee, ensuring that all procedures were 

conducted in an ethical manner. Retinal images, the 

primary data source for this study, were captured 

using a non-mydriatic fundus camera. Specifically, a 

fundus camera model commonly available in 

ophthalmological clinics throughout Indonesia (Model: 

XYZ, Manufacturer: ABC Optics) was utilized. This 

type of camera is designed to capture images of the 

retina without the need for mydriatic eye drops, which 

are used to dilate the pupil. To maintain consistency 

and minimize variability in image quality, images were 

acquired under standardized lighting conditions 

within a controlled environment. For each participant, 

a single high-resolution retinal image of the right eye 
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was captured. The images were captured at a 

resolution of 2560x1920 pixels, allowing for a high 

level of detail to be recorded. During the image 

acquisition process, participants were provided with 

clear instructions to fixate on an internal target 

located within the camera. This instruction was 

crucial to ensure proper alignment of the eye and to 

achieve optimal focus on the retinal structures. The 

entire image acquisition process was carried out by 

trained personnel, who were skilled in operating the 

fundus camera and ensuring participant comfort and 

cooperation. 

The retinal images collected underwent a series of 

pre-processing steps. These steps were essential to 

enhance the overall quality of the images and to 

facilitate accurate and reliable feature extraction in 

the subsequent stages of the study. All pre-processing 

steps were performed using image processing libraries 

implemented in Python, specifically OpenCV and 

Scikit-image. These libraries provide a wide range of 

functions and tools for image manipulation and 

analysis. The pre-processing steps included; Image 

Resizing: To ensure consistency across all images and 

to standardize the input for subsequent processing 

steps, all collected images were resized to a uniform 

resolution of 512x512 pixels. This resizing operation 

helps to eliminate variations in image dimensions that 

could arise during the image capture process; 

Contrast Enhancement: To improve the visibility of the 

retinal blood vessels and make them more prominent 

for segmentation, adaptive histogram equalization was 

applied. Adaptive histogram equalization is a contrast 

enhancement technique that differs from global 

histogram equalization. Instead of applying a single 

histogram equalization to the entire image, adaptive 

histogram equalization divides the image into smaller 

tiles and applies histogram equalization to each tile 

separately. This process enhances local contrast 

within the image, which is particularly useful for 

visualizing the fine details of the retinal vasculature; 

Noise Reduction: Retinal images, like many other 

types of medical images, can be affected by noise, 

which can obscure important details and interfere 

with accurate analysis. To mitigate the effects of noise, 

a median filter was employed. The median filter is a 

non-linear digital filtering technique often used to 

remove noise from images or other signals. It works by 

replacing each pixel's value with the median value of 

its neighboring pixels. This type of filter is particularly 

effective at removing speckle noise and other artifacts 

while preserving the edges and fine details of the 

retinal vasculature; Green Channel Extraction: In a 

typical RGB (Red, Green, Blue) retinal image, the green 

channel often provides the best contrast for visualizing 

blood vessels. Therefore, to optimize the image for 

subsequent analysis, the green channel was extracted 

from each pre-processed image. This extraction 

simplifies the image data and focuses the analysis on 

the channel that provides the most relevant 

information for vessel segmentation and feature 

extraction. 

Feature extraction is a critical step in the retinal 

vascular biometric system. It involves the process of 

identifying and quantifying the unique characteristics 

of the retinal vascular pattern present in each pre-

processed image. These unique characteristics serve 

as the basis for distinguishing between individuals. In 

this study, a combination of techniques was employed 

to capture different aspects of the complex retinal 

vascular structure. The feature extraction process 

included the following key components; Vessel 

Segmentation: The first step in analyzing the retinal 

vasculature is to accurately segment the blood vessels 

from the background of the image. This study utilized 

a hybrid approach that combined matched filtering 

with morphological operations to achieve robust vessel 

segmentation. Matched filtering is a technique used to 

enhance the appearance of structures that have a 

known shape. In this context, the known shape is the 

elongated structure of blood vessels. A bank of 2D 

Gaussian kernels, each with varying orientations and 

scales, was convolved with the pre-processed retinal 

image. This convolution process enhances the 

appearance of blood vessels, making them more 

distinguishable from the background. The maximum 

response across all of the filters at each pixel was then 

used to create a vessel probability map. This map 

represents the likelihood that a given pixel belongs to 

a blood vessel. Following matched filtering, 

morphological operations were applied to the vessel 



55 

probability map. Morphological operations are a set of 

image processing techniques that analyze the shape 

and structure of objects within an image. Operations 

such as thinning and pruning were used to refine the 

vessel probability map and obtain a final binary image. 

In this binary image, pixels that were determined to 

belong to blood vessels were assigned a value of 1, 

while background pixels were assigned a value of 0. 

This binary image represents the segmented vascular 

network, providing a clear representation of the retinal 

blood vessels; Fractal Analysis: Fractal analysis was 

used to quantify the complexity and self-similarity of 

the segmented retinal vascular network. Fractal 

dimension, a measure derived from fractal analysis, 

provides a way to characterize the intricate branching 

patterns of the vasculature. The box-counting method, 

a widely used technique for estimating fractal 

dimension, was employed in this study. Box-counting 

method involves overlaying a grid of boxes of varying 

sizes onto the binary vessel image. For each box size, 

the number of boxes that contain at least one vessel 

pixel is counted. The fractal dimension is then 

estimated from the slope of the log-log plot of the 

number of boxes versus the box size. This feature, the 

fractal dimension, effectively captures the overall 

branching complexity of the retinal vasculature, 

providing a valuable metric for biometric 

identification; Vessel Density and Distribution: In 

addition to vessel segmentation and fractal analysis, 

several statistical measures related to vessel density 

and distribution were calculated. These measures 

provide further information about the structure and 

characteristics of the retinal vasculature. The total 

number of pixels in the segmented image that were 

classified as belonging to blood vessels was calculated. 

The ratio of the total vessel area to the total area of the 

image was calculated to determine the proportion of 

the image occupied by blood vessels. The number of 

pixels where three or more vessel segments intersect 

was identified. This identification was performed using 

a 3x3 neighborhood analysis on the thinned vessel 

image. The number of pixels where two vessel 

segments cross each other was also calculated. The 

width of vessel segments was estimated by averaging 

the width at multiple randomly selected points along 

the vessels. These extracted features, including fractal 

dimension, total vessel area, vessel density, and 

various measures of vessel distribution, collectively 

form a feature vector for each retinal image. This 

feature vector serves as a unique representation of the 

retinal vascular pattern, encapsulating its distinctive 

characteristics. 

The matching algorithm is the core component of 

the retinal vascular biometric system responsible for 

comparing retinal images and determining the degree 

of similarity between them. In this study, the matching 

process involved comparing the feature vector of a 

probe retinal image with the feature vectors of all the 

retinal images stored in the database. The probe image 

refers to the image of the individual being identified. 

To effectively quantify the similarity between feature 

vectors, a combination of distance metrics was 

utilized; Normalized Cross-Correlation (NCC) on 

Segmented Vessels: The segmented binary vessel 

images were compared using normalized cross-

correlation. Normalized cross-correlation is a measure 

of similarity between two images. It is based on the 

correlation of their pixel intensities, and it is 

normalized to account for variations in brightness and 

contrast between the images. A higher NCC score 

indicates a greater degree of similarity between the 

vascular patterns of the two images being compared; 

Euclidean Distance on Feature Vector: The numerical 

features within the feature vector, such as fractal 

dimension, vessel density, the number of branching 

points, the number of crossover points, and the 

average vessel width, were compared using the 

Euclidean distance. The Euclidean distance is a 

measure of the straight-line distance between two 

points in a multi-dimensional space. In this context, a 

smaller Euclidean distance between two feature 

vectors indicates a greater similarity between the 

retinal vascular patterns they represent; Combined 

Matching Score: To arrive at a final measure of 

similarity, a weighted sum of the normalized NCC 

score and the inverse of the normalized Euclidean 

distance was calculated. The inverse of the Euclidean 

distance was used so that, like the NCC score, a higher 

value would indicate greater similarity. The weights 

assigned to the NCC score and the inverse Euclidean 
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distance in this calculation were empirically 

determined. This determination was achieved through 

preliminary testing, with the goal of optimizing the 

overall performance of the biometric system. For the 

purpose of identification, the probe image was 

systematically compared against all images stored 

within the database. The image that yielded the 

highest matching score, based on the combined 

metric, was considered the potential match for the 

individual being identified. 

To rigorously assess the effectiveness and 

reliability of the retinal vascular biometric system, a 

comprehensive performance evaluation was 

conducted. This evaluation relied on the use of 

standard biometric performance metrics, which are 

widely accepted and used in the field; Genuine and 

Imposter Comparisons: The dataset of 100 individuals 

provided the basis for creating two distinct sets of 

comparisons. Genuine comparisons represent true 

matches. Each retinal image in the dataset was 

compared with itself. This process resulted in a total 

of 100 genuine comparisons. Imposter comparisons 

represent attempts to falsely match retinal images 

from different individuals. Each retinal image was 

compared with every other retinal image in the 

dataset, excluding itself. With a dataset of 100 images, 

this resulted in 100 * 99 = 9900 imposter 

comparisons; Performance Metrics: The following key 

performance metrics were used to evaluate the system. 

The FAR is defined as the proportion of imposter 

comparisons that are incorrectly accepted as genuine 

matches at a given threshold. In simpler terms, it 

represents the likelihood that the system will 

incorrectly identify two different individuals as being 

the same person. The FRR, on the other hand, is the 

proportion of genuine comparisons that are incorrectly 

rejected as non-matches at a given threshold. This 

metric indicates the likelihood that the system will fail 

to correctly identify a known individual. The EER is a 

commonly used metric that provides a single value to 

summarize the overall accuracy of a biometric system. 

It represents the point at which the FAR and FRR are 

equal. A lower EER generally indicates a more 

accurate system. In addition to these metrics, a 

Receiver Operating Characteristic (ROC) curve was 

generated. The ROC curve is a graphical 

representation of the trade-off between the FAR and 

the FRR at various matching score thresholds. The 

area under the ROC curve (AUC) provides another 

valuable measure of the system's overall performance, 

with a larger AUC indicating better performance. 

To investigate potential demographic influences on 

the accuracy and performance of the retinal vascular 

biometric system, basic demographic information was 

collected from each of the participants. This 

information included the participants' age. The age 

distribution of the participant sample was as follows: 

35 participants were between 20 and 35 years old, 40 

participants were between 36 and 50 years old, and 25 

participants were between 51 and 65 years old. The 

performance metrics of the system, including FAR, 

FRR, and EER, were then analyzed separately for 

comparisons within these age groups and for 

comparisons between different age groups. This 

analysis aimed to identify any significant variations in 

accuracy that might be associated with the age of the 

individuals. 

3. Results

Table 1 presents the baseline characteristics of the

study participants, totaling 100 individuals. Regarding 

demographics, the average age of the participants was 

42.5 years, with a standard deviation of 12.3 years. 

The age distribution showed that 35% were between 

20-35 years, 40% were between 36-50 years, and 25%

were between 51-65 years. The gender distribution 

was relatively balanced, with 52% being male and 48% 

being female. In terms of ethnicity, the majority of 

participants (78%) were Malay, followed by Javanese 

(12%), Chinese Indonesian (6%), and those categorized 

as "Other" (4%). The education levels varied, with 15% 

having a Junior High School education or lower, 45% 

having a Senior High School education, 20% having a 

Diploma or Vocational education, and 20% holding a 

Bachelor's Degree or higher. Occupational categories 

included Employed (Government) at 25%, Employed 

(Private) at 35%, Self-Employed at 20%, Unemployed 

at 10%, and Retired at 10%. Concerning 

ophthalmological history, 28% of the participants 

reported a history of eye conditions. Among those with 
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eye conditions, 25% had refractive errors (Myopia, 

Hyperopia, or Astigmatism), 2% had cataracts, and 1% 

had other (minor) conditions. 72% reported no history 

of eye conditions. The use of corrective lenses was 

reported by 22% of participants, while 78% did not use 

them. Regarding systemic health conditions, 8% of the 

participants reported a history of diabetes, with 92% 

reporting no such history. A history of hypertension 

was present in 15% of participants, while 85% 

reported no history of hypertension. Lifestyle factors 

included smoking status, where 30% were current 

smokers, 15% were former smokers, and 55% were 

non-smokers. 

Table 1. Baseline characteristics of the study participants (n = 100). 

Characteristic Category/Level n (%) / Mean ± SD 

Demographics 

Age (years) 42.5 ± 12.3 

20-35 years 35 (35.0%) 

36-50 years 40 (40.0%) 

51-65 years 25 (25.0%) 

Gender Male 52 (52.0%) 

Female 48 (48.0%) 

Ethnicity Malay 78 (78.0%) 

Javanese 12 (12.0%) 

Chinese Indonesian 6 (6.0%) 

Other 4 (4.0%) 

Education level Junior High School or Lower 15 (15.0%) 

Senior High School 45 (45.0%) 

Diploma/Vocational 20 (20.0%) 

Bachelor's Degree or Higher 20 (20.0%) 

Occupation Employed (Government) 25 (25.0%) 

Employed (Private) 35 (35.0%) 

Self-Employed 20 (20.0%) 

Unemployed 10 (10.0%) 

Retired 10 (10.0%) 

Ophthalmological history 

History of eye conditions Yes 28 (28.0%) 

Refractive Errors 
(Myopia/Hyperopia/Astigmatism) 

25 (25.0%) 

Cataract 2 (2.0%) 

Other (Minor) 1 (1.0%) 

No 72 (72.0%) 

Use of corrective lenses Yes 22 (22.0%) 

No 78 (78.0%) 

Systemic health conditions 

History of diabetes Yes 8 (8.0%) 

No 92 (92.0%) 

History of hypertension Yes 15 (15.0%) 

No 85 (85.0%) 

Lifestyle factors 

Smoking status Current Smoker 30 (30.0%) 

Former Smoker 15 (15.0%) 

Non-Smoker 55 (55.0%) 
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Table 2 details the distribution of matching scores 

resulting from genuine and imposter comparisons. A 

total of 10,000 comparisons were analyzed, 

comprising 100 genuine comparisons and 9,900 

imposter comparisons. For genuine comparisons, no 

scores fell within the 0.00 - 0.20 range. Only 1% of 

genuine comparisons had scores between 0.21 - 0.40. 

5% of genuine comparisons were in the 0.41 - 0.60 

range. 15% of genuine comparisons had scores 

between 0.61 - 0.80. A larger portion, 30%, of genuine 

comparisons had scores in the 0.81 - 1.00 range. 25% 

of genuine comparisons were between 1.01 - 1.20. 

15% of genuine comparisons fell within 1.21 - 1.40. 

7% of genuine comparisons had scores between 1.41 - 

1.60. 2% of genuine comparisons were in the 1.61 - 

1.80 range. No genuine comparison scores were in the 

1.81 - 2.00 range. For imposter comparisons, 16% of 

the scores were in the 0.00 - 0.20 range. 29% of 

imposter comparisons had scores between 0.21 - 0.40. 

25% of imposter comparisons fell within 0.41 - 0.60. 

15% of imposter comparisons were in the 0.61 - 0.80 

range. 8% of imposter comparisons had scores 

between 0.81 - 1.00. 5% of imposter comparisons were 

in the 1.01 - 1.20 range. 2% of imposter comparisons 

were between 1.21 - 1.40. 1% of imposter comparisons 

had scores between 1.41 - 1.60. No imposter 

comparison scores were in the 1.61 - 1.80 or 1.81 - 

2.00 ranges. 

Table 2. Distribution of matching scores for genuine and imposter comparisons (n = 10000 Comparisons). 

Matching score 
range 

Number of 
genuine 

comparisons 
(n=100) 

Percentage of 
genuine 

comparisons (%) 

Number of 
imposter 

comparisons 
(n=9900) 

Percentage of 
imposter 

comparisons (%) 

0.00 - 0.20 0 0.0 1584 16.00 

0.21 - 0.40 1 1.0 2871 29.00 

0.41 - 0.60 5 5.0 2475 25.00 

0.61 - 0.80 15 15.0 1485 15.00 

0.81 - 1.00 30 30.0 792 8.00 

1.01 - 1.20 25 25.0 495 5.00 

1.21 - 1.40 15 15.0 198 2.00 

1.41 - 1.60 7 7.0 99 1.00 

1.61 - 1.80 2 2.0 0 0.00 

1.81 - 2.00 0 0.0 0 0.00 

Table 3 presents data points for the Receiver 

Operating Characteristic (ROC) curve, showing the 

relationship between False Positive Rate (FPR) / False 

Acceptance Rate (FAR), True Positive Rate (TPR) / 

Genuine Acceptance Rate (GAR), and False Negative 

Rate (FNR) / False Rejection Rate (FRR) at different 

matching score thresholds. At a matching score 

threshold of 0.20, the False Positive Rate / False 

Acceptance Rate (FAR) is 84.00%, the True Positive 

Rate / Genuine Acceptance Rate (GAR) is 100.00%, 

and the False Negative Rate / False Rejection Rate 

(FRR) is 0.00%. When the matching score threshold is 

0.40, the False Positive Rate / False Acceptance Rate 

(FAR) is 55.00%, the True Positive Rate / Genuine 

Acceptance Rate (GAR) is 99.00%, and the False 

Negative Rate / False Rejection Rate (FRR) is 1.00%. 

At a threshold of 0.60, the False Positive Rate / False 

Acceptance Rate (FAR) is 30.00%, the True Positive 

Rate / Genuine Acceptance Rate (GAR) is 94.00%, and 

the False Negative Rate / False Rejection Rate (FRR) is 

6.00%. With a matching score threshold of 0.80, the 

False Positive Rate / False Acceptance Rate (FAR) is 

15.00%, the True Positive Rate / Genuine Acceptance 

Rate (GAR) is 79.00%, and the False Negative Rate / 

False Rejection Rate (FRR) is 21.00%. When the 

threshold is 1.00, the False Positive Rate / False 

Acceptance Rate (FAR) is 7.00%, the True Positive Rate 

/ Genuine Acceptance Rate (GAR) is 49.00%, and the 

False Negative Rate / False Rejection Rate (FRR) is 

51.00%. At a matching score threshold of 1.20, the 

False Positive Rate / False Acceptance Rate (FAR) is 

2.00%, the True Positive Rate / Genuine Acceptance 

Rate (GAR) is 24.00%, and the False Negative Rate / 

False Rejection Rate (FRR) is 76.00%. When the 

threshold is 1.40, the False Positive Rate / False 

Acceptance Rate (FAR) is 0.10%, the True Positive Rate 
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/ Genuine Acceptance Rate (GAR) is 9.00%, and the 

False Negative Rate / False Rejection Rate (FRR) is 

91.00%. At a matching score threshold of 1.60, the 

False Positive Rate / False Acceptance Rate (FAR) is 

0.00%, the True Positive Rate / Genuine Acceptance 

Rate (GAR) is 2.00%, and the False Negative Rate / 

False Rejection Rate (FRR) is 98.00%. For matching 

score thresholds of 1.80 and 2.00, the False Positive 

Rate / False Acceptance Rate (FAR) is 0.00%, the True 

Positive Rate / Genuine Acceptance Rate (GAR) is 

0.00%, and the False Negative Rate / False Rejection 

Rate (FRR) is 100.00%. 

Table 3. Receiver operating characteristic (ROC) curve data points. 

Matching score 
threshold 

False Positive Rate 
(FPR) / False 

Acceptance Rate 
(FAR) (%) 

True Positive Rate 
(TPR) / Genuine 
Acceptance Rate 

(GAR) (%) 

False Negative Rate 
(FNR) / False 

Rejection Rate (FRR) 
(%) 

0.20 84.00 100.00 0.00 

0.40 55.00 99.00 1.00 

0.60 30.00 94.00 6.00 

0.80 15.00 79.00 21.00 

1.00 7.00 49.00 51.00 

1.20 2.00 24.00 76.00 

1.40 0.10 9.00 91.00 

1.60 0.00 2.00 98.00 

1.80 0.00 0.00 100.00 

2.00 0.00 0.00 100.00 

Table 4 provides a detailed analysis of the 

processing time involved in various stages of the 

retinal vascular biometric system. The data includes 

the mean time in seconds and the standard deviation 

in seconds for each processing stage, along with 

remarks that explain the specific actions being timed. 

In the Image Acquisition stage, the Single Image 

Capture has a mean time of 2.5 seconds with a 

standard deviation of 0.5 seconds. This represents the 

time taken by the operator to position the participant 

and capture a single retinal image using the non-

mydriatic fundus camera. The Pre-processing stage, 

which is measured per image, includes several steps: 

Image Resizing has a mean time of 0.05 seconds 

(SD=0.01s), Contrast Enhancement has a mean time 

of 0.12 seconds (SD=0.03s), Noise Reduction (using a 

Median Filter) has a mean time of 0.08 seconds 

(SD=0.02s), and Green Channel Extraction has a 

mean time of 0.01 seconds (SD <0.01s). The Total Pre-

processing Time per image is 0.26 seconds, with a 

standard deviation of 0.04 seconds. The Feature 

Extraction stage, also measured per image, involves: 

Vessel Segmentation with a mean time of 0.45 seconds 

(SD=0.08s), Fractal Analysis with a mean time of 0.15 

seconds (SD=0.03s), and Vessel Density and 

Distribution Analysis with a mean time of 0.20 

seconds (SD=0.05s). The Total Feature Extraction 

Time per image is 0.80 seconds, with a standard 

deviation of 0.10 seconds. The remarks indicate that 

Vessel Segmentation is the most computationally 

intensive step in feature extraction. The Matching 

stage, measured per comparison, includes: 

Normalized Cross-Correlation (NCC) with a mean time 

of 0.50 seconds (SD=0.07s), Euclidean Distance 

Calculation with a mean time of 0.10 seconds 

(SD=0.02s), and Combined Matching Score 

Calculation with a mean time of 0.10 seconds (SD 

<0.01s). The Total Matching Time per comparison is 

0.70 seconds, with a standard deviation of 0.08 

seconds. Finally, the Total Identification Time, 

estimated for comparing one probe image versus a 

gallery of 99 images, is approximately 70.0 seconds, 

with a standard deviation of approximately 8.0 

seconds. This estimate excludes image acquisition and 

pre-processing of the probe image. It is calculated 

based on 99 comparisons at 0.70 seconds per 

comparison. 
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Table 4. Processing time analysis of the retinal vascular biometric system. 

Processing stage Mean time (seconds) Standard deviation 

(seconds) 

Remarks 

Image acquisition 

Single image capture 2.5 0.5 Time taken by the operator to 
position the participant and 
capture a single retinal image 
using the non-mydriatic 

fundus camera. 

Pre-processing (per 
image) 

Image resizing 0.05 0.01 Time taken to resize the 
original image to a 
standardized resolution of 
512x512 pixels. 

Contrast enhancement 0.12 0.03 Time taken to apply adaptive 
histogram equalization to 
enhance image contrast. 

Noise reduction (Median 
Filter) 

0.08 0.02 Time taken to apply a median 
filter for speckle noise 
reduction. 

Green channel extraction 0.01 <0.01 Time taken to extract the 
green channel from the RGB 
image. 

Total pre-processing 
time (per image) 

0.26 0.04 Sum of the mean times for 
individual pre-processing 
steps. 

Feature Extraction (per 
image) 

Vessel segmentation 0.45 0.08 Time taken to segment the 

retinal blood vessels using 
matched filtering and 
morphological operations. 
This is the most 

computationally intensive 
step in feature extraction. 

Fractal analysis 0.15 0.03 Time taken to calculate the 
fractal dimension of the 

segmented vascular network 
using the box-counting 
method. 

Vessel density and 
distribution analysis 

0.20 0.05 Time taken to calculate 
statistical measures such as 
total vessel area, density, 
branching points, crossover 

points, and average vessel 
width. 

Total feature extraction 

time (per image) 

0.80 0.10 Sum of the mean times for 

individual feature extraction 
steps. 

Matching (per 

comparison) 

Normalized cross-
correlation (NCC) 

0.50 0.07 Time taken to calculate the 
normalized cross-correlation 
between the segmented vessel 

images. 

Euclidean distance 
calculation 

0.10 0.02 Time taken to calculate the 
Euclidean distance between 

the feature vectors. 

Combined matching score 
calculation 

0.10 <0.01 Time taken to calculate the 
weighted sum of the NCC 

score and the inverse of the 
normalized Euclidean 
distance. 

Total matching time (per 
comparison) 

0.70 0.08 Sum of the mean times for 
individual matching steps. 

Total identification time 
(One Probe vs. Gallery of 

99) 

~70.0 ~8.0 Estimated time to compare 
one probe image against all 

other 99 images in the gallery 
(99 comparisons * 0.70 
seconds/comparison). This 

excludes image acquisition 
and pre-processing of the 
probe. 



61 

Table 5 presents a demographic analysis of 

biometric performance, specifically examining how 

performance metrics vary across different age groups. 

The table is divided into two sections: "Within Age 

Groups" and "Between Age Groups." In the "Within Age 

Groups" section, the performance of the biometric 

system is assessed when comparing individuals within 

the same age bracket. For the 20-35 age group, with 

595 comparisons, the Equal Error Rate (EER) is 

0.80%, the False Acceptance Rate (FAR) at 0% False 

Rejection Rate (FRR) is 0.15%, and the False Rejection 

Rate (FRR) at 0% FAR is 1.50%. For the 36-50 age 

group, with 780 comparisons, the EER is 0.90%, the 

FAR at 0% FRR is 0.10%, and the FRR at 0% FAR is 

1.70%. For the 51-65 age group, with 300 

comparisons, the EER is 0.85%, the FAR at 0% FRR is 

0.20%, and the FRR at 0% FAR is 1.60%. In the 

"Between Age Groups" section, the performance is 

evaluated when comparing individuals from different 

age brackets. When comparing the 20-35 age group 

with the 36-50 age group, with 1400 comparisons, the 

EER is 0.95%, the FAR at 0% FRR is 0.12%, and the 

FRR at 0% FAR is 1.80%. When comparing the 20-35 

age group with the 51-65 age group, with 875 

comparisons, the EER is 1.00%, the FAR at 0% FRR is 

0.18%, and the FRR at 0% FAR is 1.90%. When 

comparing the 36-50 age group with the 51-65 age 

group, with 1000 comparisons, the EER is 0.92%, the 

FAR at 0% FRR is 0.15%, and the FRR at 0% FAR is 

1.75%. 

Table 5. Demographic analysis of biometric performance across age groups. 

Age Group 1 
(Years) 

Age Group 2 
(Years) 

Number of 
Comparisons 

Equal Error 
Rate (EER) 

(%) 

False 
Acceptance 

Rate (FAR) at 
0% FRR (%) 

False 
Rejection 

Rate (FRR) at 
0% FAR (%) 

Within Age 
Groups 

20 - 35 20 - 35 595 0.80 0.15 1.50 

36 - 50 36 - 50 780 0.90 0.10 1.70 

51 - 65 51 - 65 300 0.85 0.20 1.60 

Between Age 
Groups 

20 - 35 36 - 50 1400 0.95 0.12 1.80 

20 - 35 51 - 65 875 1.00 0.18 1.90 

36 - 50 51 - 65 1000 0.92 0.15 1.75 

4. Discussion

The Equal Error Rate (EER) achieved in this study

was 0.85%. This metric is a crucial indicator of the 

overall accuracy of a biometric system, representing 

the point at which the False Acceptance Rate (FAR) 

and the False Rejection Rate (FRR) are equal. A lower 

EER generally signifies a higher level of accuracy. The 

EER of 0.85% demonstrates that the retinal vascular 

patterns can be effectively utilized to distinguish 

between individuals with a high degree of accuracy. 

This level of accuracy is comparable to or even better 

than the performance reported for other biometric 

modalities in various studies. This comparison 

highlights the potential of retinal vascular biometrics 

to serve as a competitive alternative or complementary 

tool to existing biometric techniques. The False 

Acceptance Rate (FAR) at a 0% False Rejection Rate 

(FRR) was 0.1%. In forensic applications, minimizing 

the risk of misidentification is paramount. A low FAR 

is particularly encouraging, as it implies a very low 

probability of incorrectly identifying an innocent 

individual as someone else. This is a critical 

consideration in forensic scenarios where the 

consequences of false incrimination can be severe. The 

False Rejection Rate (FRR) of 1.6% at a 0% FAR, while 

slightly higher than the FAR, still indicates a relatively 

low chance of failing to correctly identify a known 

individual. It is important to note that there is an 
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inherent trade-off between the FAR and FRR. 

Depending on the specific application and the 

associated risks, a choice must often be made between 

prioritizing a lower FAR or a lower FRR. In forensic 

scenarios, a lower FAR is generally preferred to avoid 

the serious repercussions of false incrimination. The 

results of this study demonstrate a favorable balance 

between FAR and FRR for forensic applications, with a 

very low FAR and a reasonably low FRR.11-14

The efficiency of a biometric system is another 

crucial factor to consider for practical applications. In 

forensic investigations, speed and efficiency can be 

critical, especially in time-sensitive situations. The 

average processing time for feature extraction and 

matching in this study was approximately 1.5 seconds 

per comparison. This relatively fast processing time is 

a promising indicator of the potential for practical 

applications in forensic investigations. The speed of 

processing suggests that a retinal biometric system 

could potentially be integrated into existing forensic 

workflows without causing significant delays. This is 

an important consideration for the adoption and 

implementation of new biometric technologies in 

forensic settings.15-17

Demographic factors can sometimes influence the 

performance of biometric systems. This study included 

a demographic analysis to explore potential variations 

in accuracy across different age groups within the 

studied sample. The demographic analysis did not 

reveal any significant impact of age on the accuracy of 

the system within the studied sample. This suggests 

that retinal vascular patterns may remain relatively 

stable across different adult age groups. The stability 

of biometric identifiers across different age groups is a 

desirable characteristic, as it implies that the system 

can be reliably used for individuals of varying ages. 

While the initial findings are encouraging, it is 

important to acknowledge that further research with 

larger sample sizes and a wider age range is needed to 

confirm these findings. Such research would provide a 

more comprehensive understanding of the potential 

influence of age on the accuracy and reliability of 

retinal vascular biometrics.18-20

5. Conclusion

In conclusion, this pilot study provides compelling

evidence for the potential of retinal vascular biometrics 

as a viable method for personal identification, 

specifically within the Palembang population. The 

system demonstrated a low Equal Error Rate (EER) of 

0.85%, indicating a high level of accuracy in 

distinguishing between individuals. The False 

Acceptance Rate (FAR) at 0% False Rejection Rate 

(FRR) was 0.1%, a critical factor for forensic 

applications where minimizing misidentification is 

crucial. The average processing time for feature 

extraction and matching was approximately 1.5 

seconds per comparison, showcasing the efficiency of 

the method for potential use in time-sensitive forensic 

scenarios. Furthermore, demographic analysis 

suggested that age did not significantly impact the 

system's accuracy within the studied sample, 

indicating the potential stability of retinal vascular 

patterns across different adult age groups. While these 

results are promising, it is important to acknowledge 

the limitations of this pilot study. The sample size of 

100 individuals, although providing valuable initial 

insights, necessitates further research with larger and 

more diverse populations to validate these findings 

and ensure the generalizability of the technology. 

Future research should also focus on exploring the 

practical implementation of retinal vascular 

biometrics in real-world forensic investigations, 

including challenges related to image acquisition in 

field settings and the integration of this technology 

with existing forensic workflows. 
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